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1. INTRODUCTION 

A possible indication of the existence of global climate warming is the presence of a trend 

in the travel time of an acoustic signal along several ocean paths over a period of many 

years. This report presents improved techniques for testing for trend in such time series 

data. For background on the use of statistical time series and trend extraction methods for 

ocean acoustic global warming studies the reader is referred to our previous report 

[Bottone, Gray, and Woodward, 1995]. 

The specific problem we address in this report is that of testing for trend using the model 

X,=a + bt + Et, (1) 

where Et may be highly correlated stationary noise. In the ocean acoustics problem, Xt 

represents the acoustic travel time along a fixed path at time t, however, all of the 

techniques discussed in this report apply to any time series which can be represented by the 

model given by equation (1). Testing for trend in a given set of time series data assumed 

to be modeled by equation (1) amounts to testing the hypothesis b = 0. If the value of b 

estimated from the data is significantly (at some given significance level) different from 
zero, a trend is said to exist in the data. If the distribution of the noise, Et, is completely 

known, this problem is relatively simple. If, however, as is usually the case in practice, 
the distribution of Et, or, at least, its parameters, must the estimated from the data, the 

problem is somewhat more difficult. In particular, when the correlation in the Et is high, 

as appears to be the case with ocean acoustic data, the problem becomes extremely difficult 

due to the difficulty in obtaining reasonable parameter estimates without exceedingly long 

samples lengths. 

Previously existing methodology for testing for trend in the model given by equation (1) is 
generally invalid when the correlation in the Et is high, unless the sample size is 

unacceptably large. These methods are unable to differentiate between trends which are 
due to b * 0 and "temporary trends" that are due to high correlation in Et. This inability to 

differentiate between a true trend and high correlation manifests itself in inflated 
significance levels. That is, when b is equal to zero in equation (1) and the Et are highly 

correlated and existing methods are used to compute the significance level using a nominal 

5% level, the percentage of realizations from (1) for which a nonzero b is (incorrectly) 

detected can be as high as 25%-50% for all existing tests. The impact is serious since 

Woodward and Gray [1993] show for atmospheric temperature data that when existing 



methods for testing b = 0 in equation (1) are applied to the data one concludes that b is 

significantly greater than zero and, hence, warming is present. On the other hand, they 

also model the data as an ARIMA( p,l,q), which is a plausible "correlation model", and the 

inference is the opposite, i.e., the current warming trend is temporary and should not be 

predicted to continue. The source of the conflicting results can be traced to the invalidity of 

existing tests for b = 0 in this setting. 

As a result of this difficulty, Woodward and Gray stressed the importance of selecting the 

statistical model used to represent the data with care. Consequently, they developed a 

method to let the data select the model [Woodward and Gray, 1995]. In that paper, their 

procedure selected the "correlation model" as appropriate for the atmospheric temperature 

data, which implied that warming should not be predicted to continue. This method was 

also applied to simulated ocean acoustic travel time data in our previous report, where it 

was shown that it would take well over 20 years to reliably distinguish whether such data 

was best classified as coming from a line plus noise model as in equation (1) or a 

correlation model (ARIMA). 

What is needed, however, is a more robust test for trend in equation (1) than currently 

exists. That is, we need a test for b = 0 that is valid for much higher correlated data than 

previous tests allow. By developing such a test we will have a model which is more robust 

to high correlation and, hence, should be more compatible with correlation models. It will 

not be possible to make such models completely compatible since the assumption that the 
Et in equation (1) is stationary may not be reasonable. However, it is possible to 

dramatically improve the test for b = 0 so that it is compatible with correlation models in 

most cases. In our current work, described in this report, we have developed a new test 

for testing b = 0 in equation (1) that is valid for correlations as high as .95. That is, the 

new test appropriately maintains the specified significance level while continuing to have 

good detection capability when a trend is actually present. It should be remarked that 

although equation (1) models a linear trend, the test is sensitive to detecting any general 

increase, or decrease, in the data. It is interesting to note that when this new test is applied 

to the atmospheric temperature data we get agreement with the previous result of 

Woodward and Gray, that is, the new test determines that b is not significantly different 

from zero, which is compatible with the classification of the data as more likely coming 

from a correlation model that would predict no warming. This new method is described in 

some detail in section 2, with some of the more difficult technical discussion found in 

appendix A, which is a copy of a paper on this topic by the authors submitted for 

publication in the Journal of Time Series Analysis. 



This new method for testing for trend has been developed in such a way that it can be 

directly extended to the multivariate, or vector, case. In the ocean acoustics problem, this 

corresponds to having a set of data consisting of travel times on several paths and testing 

for trend on all of the paths simultaneously. This generalization will be presented in detail 

in section 3. 

Appendix B contains a description of the TRENDS software, which allows the user to 

perform the new test for trend on a selected set of time series data. It also contains routines 

which allow the data to select between the model of equation (1) or an ARIMA(/?,1,0) 

correlation model. A given set of data can be modeled in various ways, the noise structure 

can be approximated, and the power of the test for trend can be computed. Questions such 

as how long will it take to detect a trend in data similar to a given data set and how large 

would the trend have to be in a given data set to be significant can be answered with simple 

applications of the software. 



2. TESTING FOR TREND IN UNIVARIATE TIME SERIES DATA 

In this section we develop a new method to test the hypothesis Ho: b = 0 in equation (1) 

against either the two-sided alternative H\: b * 0 or the one-sided alternative H]: b < 0 (or 

Hi: b>0). The one-sided alternative b<0 is more appropriate to the ocean acoustics 

problem since the travel time of any acoustic signal is expected to decrease with time on 

most paths if there is warming. We will concentrate here, however, on the two-sided 

alternative, b * 0, since it is most readily generalizable to the multivariate case. 

In equation (1) X, is assumed to be a random variable given by the discrete stochastic 

process [Xt\ t = 0,±1,...}. In the ocean acoustics problem X, represents travel time as a 

function of time, /. A realization of length n of the time series, Xt, is a set of real-valued 

outcomes which will be denoted {xt; t = l,...,n}. Loosely speaking, a set of data, xt, will 

be considered a realization from the time series, X,. The noise component in equation (1), 

Et, will be assumed to be a stationary autoregressive (AR) process of order p satisfying 

[Box and Jenkins, 1976; Gray et al., 1996] 

(t>(B)Et = a,, (2) 

where B is the backward shift operator given by B Xt = Xt_k, 

<$>{B) = \-<t)xB-<!>2B2 </>pBp, (3) 

and at is discrete white (Gaussian) noise with zero mean and variance ca, i.e., E[at] = 0 

and Elaf] = o2
a. To motivate the new method, we first discuss testing for trend under the 

assumption that the noise in equation (1) is white, i.e., (f)(B) = 1. 

2.1.   Ordinary Linear Regression 

Given a set of time series data, {xt; t = 1,...,«}, we wish to test the hypothesis b = 0 in 

equation (1) under the assumption that Et=at. If the hypothesis is rejected at an 

appropriate significance level (usually 5%), then it is generally accepted that a trend is 

present. In ordinary linear regression , the least squares estimators for b and a in 

equation (1) are 



2>-ox, 
_ t=\ 

a = X-bt, 

(4) 

(5) 

where 

1   " 

t = -X,t = -—. 
n ., 2 

(6) 

(7) 

Sample estimates of these quantities are obtained by substituting the sample data xt into the 

appropriate equation.   Under the usual regression assumptions that the residuals are 
independent and normally distributed with mean zero and variance aa, the estimated 

standard error of b is given by 

SE{b) = 

n^iXt-a-bt)2 

t=\ 

(n-2)n(nl-l) 

1/2 

(8) 

Under these assumptions, the test statistic i = b I SE(b) is distributed as Student's t with 

n-2 degrees of freedom when the null hypothesis Ho: b = 0 is true. For a given 

realization, if I can then be compared with the 2.5% critical value of the Student's t 

distribution with n-2 degrees of freedom, for the two-sided test. The null hypothesis is 
rejected, and the trend is said to be significant (at the 5% level), if lfl> t915(n - 2), which 

is the critical region for the test. (t975(n - 2) is equal to 2.01 for n = 50, 1.98 for n = 100 

and asymptotically equal to 1.96 for large n, i.e., it is asymptotically normal). For the 
one-sided (negative) test, the trend will be significant (at the 5% level) if t < -t95(n - 2). 

A thorough discussion of linear regression theory can be found in many textbooks on 

mathematical statistics, such as Robinson and Silva [1979]. 



2.2.   A New Testing Procedure 

In this subsection we outline the new method to test H0: b = 0 in equation (1). Full details 

can be found in appendix A.   Notice that if 0(5) in (1) were known, then we could 

rewrite (1) as 

f P 
0(5)X, = 0(l)a +   lift 

Vi=l     J 

= c + dt + at, 

b+4>(\)bt + <t>{B)Et 
(9) 

where c = <p(l)a+   X/0,- b, d = 0(1)6 and at is white noise.  If E, is stationary, which 

implies 0(1) > 0, then d = 0 if and only if £ = 0, and d and b have the same sign when 

b*0. To test 6 = 0 in equation (1) we simply test d = 0 in equation (9), in which case 

we are able to use the usual regression-based standard errors as given in section 3.1 since 

the residuals are white. 

In practice 0(5) is not known and must be estimated from the sample data. To estimate 

0(5), we subtract the least-squares estimates of a and b (denoted a and b) from the data 

to obtain the residuals 

Et = Xt-a-bt. (10) 

These residuals do not follow the same model as Et and in general are not stationary since 

Et=a + bt + Et-a-bt 

= (a-a) + (b-b)t + Et, 
(11) 

which does not have constant mean unless b = b. However, in most cases we find it 

reasonable to assume these residuals are approximately AR(p), and we let 0(5) denote the 

estimated autoregressive operator. We transform the data using 0(5) to obtain 

Wt = 0(5)Xf 

= 0(l)a + 

= c' + d't + g„ 

fp «} 
1/0,- 

Vi=l     ) 

b + (j)(l)bt + gt (12) 



p 
where c' = 0(l)a +   £/0f b,   d' = <j)(l)b, and g, = (p(B)(f)   (B)at, which will not be 

Vi=i    y 

white noise but should be a reasonably close approximation to it. 

A straightforward application of the procedure (assuming g, is white) is to use standard 

regression procedures to test for the significance of d', which should be a good estimate of 
d if gt is close to being white. This estimation procedure is summarized as follows: 

1. Estimate a and b using least squares. 

2. Calculate Et as in (3). 

3. Find Burg estimates of <j)(B) where (j)(B)Et = a,. Call this estimate (j>(B). 

4. Transform the data to obtain $(B)Xt =c' + d't + gt where gt is nearly white. 

^ A. A, J-. A. 

5. Calculate t =d' I SE(d'), where d' and its standard error are the usual least 

squares-based quantities assuming uncorrelated residuals.  Compare t with 
A, A 

t(n-p-2) critical values based on Student's t since (f)(B)Xt is of length 

n — p. 

As is shown in appendix A, because of bias in the estimate (j>(B), the distribution of the 

test statistic, t, defined above, is not close to Student's t distribution when the residuals 

are highly correlated, i.e., 0(1) ~ 0, and the series length is small to moderate, n ~ 100. 

For example, for the model in equation (1) with <p(B) = 1-.955 and b = 0, this test had a 

significance level of approximately 25% for n = 100 using the usual critical regions based 

on Student's t, instead of the nominal 5%. We see that this procedure suffers from the 

same problem of excessive actual significance levels that occurs with all existing tests. 

2.2.1. A bootstrap approach 

This deficiency in maintaining the true significance level when b = 0 can be remedied by 

finding the true distribution and critical regions of the test statistic t, which we propose to 

estimate by employing a bootstrap procedure. The advantages of using the test statistic t 

defined above is that it is quickly calculated so a bootstrap will not consume a prohibitive 

amount of computer time and it is readily generalizable to the multivariate case, as will be 

seen in section 3. In the bootstrap procedure we obtain t for a sample data set using steps 

1-5 above. To simulate realizations under HQ we estimate (j)(B) in (1) assuming b = 0 and 



denote the estimate by 0(O)(5). That is, under H0 we assume that any trending behavior in 

the series is due to correlation structure alone. We then obtain by simulation B realizations 

from the autoregressive model with AR operator given by <t>{0)(B). For the bth 

realization, b = l,...,B, we calculate ib* as in step 5. For the two-sided test, the null 

hypothesis is rejected at the a level of significance if t > t[_all or i < t*a/2 where tß is the 

/3th empirical quantile of \tb\ _ . Because of the symmetric nature of t, in practice we 

accomplish this test by rejecting H0 if \t\>\t\*_a, where \t\\_a is the (1 - a)th empirical 

quantile of l\ib\\ . Since the probability that a randomly selected member from the 

population is greater than or equal to the ;'th largest value is jl (B +1), then by setting 

a = jl (B+1) it follows that \t\*_a is the ;th largest value of [\tb ljfc=i, e.g., if a = 0.05 

r      -i399 
and B = 399 then \t\\_a is the 20th largest value of \^b])b=] • For a one-sided test, the a- 

level critical value is the (l-a)th or ath empirical quantile of {£}fc depending on 

whether the alternative is Hi: b > 0 or Hj: b < 0, respectively. 

2.2.2. A second application of the bootstrap 

As is shown in appendix A, if 0(1) is near zero, that is, there is a root of the characteristic 

polynomial close to unity, the significance levels are still high after the bootstrap has been 

used to approximate the critical region. This phenomenon is caused by the bias in 

estimating (j)(B). Appendix A describes a procedure, which relies on a second application 

of the bootstrap, which adjusts the test statistic, i, by a factor, C, which is less than one 

when 0(1) is near zero, to yield an adjusted test statistic, /adj = Ct.   This adjusted test 

statistic is then compared to the critical values of the distributions, such as {l£l}fc=1> \b=Y 

described above. 

2.3.   Results 

Section 3 of appendix A shows in great detail the results of simulation studies designed to 

examine the performance of the new testing procedures. There it is shown (see table 3 in 

appendix A), that for a variety of noise models with high correlation, the observed 

significance levels are near the nominal 5% even for series lengths as small as n = 50. It is 

also shown there that the new tests also have substantial power in detecting trends in the 

time series studied. 



2.3.1. Analysis of time series data from the MASIG model 

As an example of the use of the new testing procedures, we analyze a time series produced 

by the MASIG model. The MASIG (Mesoscale Air-Sea Interaction Group) model is a 

reduced gravity ocean model driven by COADS (Comprehensive Ocean-Atmosphere Data 

Set) winds, coupled to an equatorial model at its southern boundary [Pares-Sierra and 

O'Brien, 1989]. The acoustic travel-time anomaly for a path from Hawaii to San Diego for 

a 20 year period is plotted in figure 2-1. The time axis is given in years, with data plotted 

every month, giving 240 points in the time series. As can be seen in the figure, the travel- 

time anomalies are between ± 2 seconds. This time series, which represents the model 

years 1970-1990, has no trend (the slope of the best fit straight line is close to zero). If 

there were warming occurring during this period the time series would look similar to that 

shown in figure 2-1, except that there would be added to it a warming trend. In this 

context, a warming trend would be given by a negative slope (the best fit straight line 

through the data would have a negative slope). A slope of -0.10 seconds/year, a change of 

-2 seconds over 20 years, would correspond to an approximate increase in temperature 

along the path of 0.01 degrees Celsius per year, or 0.2° C increase over 20 years (a slope 

of-0.05 sec/yr would give half these values). 

2.0 r 
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5 10 15 
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Figure  2-1. Time series for acoustic travel-time anomaly from the MASIG 

model. 



We modeled the last 160 points of the MASIG data as an AR(10). This model satisfies 

(l-2.17655+1.692652-.944353+.7730ß4-. 67935s+.4348Ö6 

-.060857+.236958-.474559+.2024510)£, = at, 
(13) 

with white noise variance a^ =.001196. Our simulations consisted of generating 

realizations from the model given by equation (1) with Et given by equation (13) with 

two warming scenarios: lines with slopes of b = -0.05 and b = -0.10 seconds/year. In 

table 2-1 we give results using the bootstrap test procedure (labeled TB in the table) and 

the adjusted bootstrap test procedure (TBA) assuming 5 to 30 years of monthly data. The 

table also contains the case of no warming, b - 0. There it can be seen that when b = 0 

both tests produce actual significance levels which do not differ significantly from the 

nominal 5% level, with the only exception being TB at 5 years. 

Significance 
Level 

Power 
-0.05 s/y slope    -0.10 s/y slope 

Years TB TBA TB TBA TB TBA 

5 7.5 4.3 9.5 5.3 9.8 4.9 

10 6.0 4.3 10.5 7.5 14.4 8.7 

15 5.3 5.1 13.7 11.6 26.8 22.7 

20 4.6 4.2 21.7 18.4 45.8 39.0 

25 5.2 5.0 31.8 28.6 70.5 62.0 

30 6.0 5.7 49.5 45.7 88.0 83.7 

Table 2-1.    Observed   significance   levels   and   powers   for 

AR(10) model fit to monthly MASIG data. 

The power in table 2-1 is computed by generating 1000 realizations from the model of 

equation (1) with noise from equation (13) and the number of bootstraps replications 

B = 399. The power is estimated by the percentage of realizations which have significant 

slope at the 5% nominal level using the one-sided tests describes above. As can be seen in 

the table, the TB test has more power than the TBA test, which one would be justified in 

using for those cases where the significance level is near the 5% nominal level, which is 

10 



usually the case here (except, perhaps, for 5 years). Even using the TB test, for warming 

to be detected at least 50% of the time in the simulations, over 20 years of data would be 

needed if the slope is -0.10 seconds/year and at least 30 years if the slope is -0.05 

seconds/year. 

11 



3. TESTING FOR TREND IN MULTIVARIATE TIME SERIES DATA 

In this section we address the problem of testing for trend in the multivariate, or vector, 

model 

Xf=a + bf + E„ (14) 

where the vector random variable E, =[En,Et2,...,Etm]' may be highly correlated (in time) 

stationary noise.    In the ocean acoustics case,  Xt=[Xtl,Xt2,...,Xtm]',  where   Xti 

represents the travel time on path /, i = l,...,m (the total number of paths is m), at time t. 
A sample set of data can be arranged in an nxm data matrix, X, where {X}ft- = xti, and 

xti is the measured travel time on path i, i = l,...,m, at time t, t = l,...,n. For a given 

data set, X, we wish to test the hypothesis Ho: b = 0 against the alternative hypothesis 

Hj: b * 0. Other alternative hypotheses will not be dealt with here for two reasons: 1) it is 

not clear in the ocean acoustics problem what the alternative hypothesis should be since it is 

expected under the global warming hypothesis that some paths will warm (decrease in 

travel time) while others may cool (increase in travel time) and 2) the mathematics 

necessary to treat other alternative hypotheses is quite formidable and beyond the approach 

used here. 

We assume that the noise in equation (14), Et, is given by a multivariate autoregressive 

process of order p satisfying 

E,=*1E,_1+<&2E,_2+...+fcpE,_p+U„ (15) 

where Oj, <E>2,-.-, <&„, are real mxm matrices and Ur is a multivariate white noise 

vector such that £[U,] = 0, £[ILU;] = I, and E[\Jt\]
,
t+k] = 0, k*0. To motivate the 

generalization of the new method for testing for trend from the univariate to the multivariate 

case, we first discuss testing for trend in the multivariate setting under the assumption that 
the noise in equation (14) is white, i.e., E, = U,. 

3.1.    Ordinary Multivariate Linear Regression 

Let us rewrite equation (14) for n data vectors as 

X = HB + E, (16) 

where X is the n x m data matrix defined above 
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X 

Ml      A12 

(2l     X22 

X, \m 

L2m (17) 

vn\     An2 

H, the "design matrix", is an n x 2 matrix given by 

H = 

1    1' 

1   2 

1   n 

(18) 

B is a 2 x m matrix defined by 

B = 
a 

b' 

ax    a2 

b\    b2 
(19) 

and the error matrix, n x m, is given by 

E = 

-11     ß12 

-21     ^22 

£■„!    £■, «2 

'Im 

-2/n (20) 

The assumption in ordinary linear regression is that the m observations at time t have 

covariance matrix Z, but observations from different times are uncorrelated, i.e., 
E[EtiEsj] = Sls'Zij, i,j = l,...,m, t,s = l,...,n, where öts is the Kronecker delta. 

The   least-squares   estimate   of   B,   denoted    B,   is   found   by   minimizing 

tr[(X - HB)'(X - HB)]. The result is [Johnson and Wichern, 1988] 

-li B = (H'H)~'H'X (21) 

It can be shown that B is an unbiased estimator for B, i.e.,   £[B] = B and that the 

covariance of B is given by [Anderson, 1984] 

-l cov[B] = I<g>(H'Hr\ (22) 

where S®(H'H)    is the direct product of the matrices £ and (H'H)   .  Focusing on b, 

the second row of B, we have 
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cov[b] = r!I, (23) 

where A-1 is the 22 element of (H'H)~!. It can easily be shown that 

A-^{(H'H)-'}22 
(»     -^V       12 7^2 (24) 

To establish distributional results the further assumption is made that the noise vector, Er, 

is m-variate normal. Under this assumption, it follows that the estimator, b, which is 
some linear combination of the E,, is also m-variate normal with mean b and covariance 

given by equation (24), i.e., b ~ N(b, A_1S). The residual matrix, E, is defined by 

E=X-HB -HaTH^H'Jx, (25) 

and the residual sum of squares, E'E, can be shown to be independent of b and to be 

distributed as a Wishart distribution with n-2 degrees of freedom, i.e., 

E'E ~ Wm(n-2,1.) [Johnson and Wichern, 1988]. An unbiased estimator of Z is given 

by 

S = _!_E'E = — (X-HB)'(X-HB). (26) 
n-2 n-2 

We now define the test statistic, T2, by 

r2 = A(n-2)(b-b)'(E'E)-1(b-b) = A(b-b)'S-1(b-b). (27) 

It can be proved [Seber, 1984] that in our case, i.e., b ~ N(b, A-1!), E'E ~ Wm(n - 2,2) 

and b independent of E'E, then 

w-2-ifi + l  T2   _ F(mn_2_m + 1)f (28) 
m n-2 

where F(m,n-2-m +1) is the F-distribution with m and n-2-m + l degrees of 

freedom. 

To test the hypothesis H0: b = 0 against the alternative hypothesis Hi: b * 0, we assume 

b = 0 in equation (27) and compare 

p=n-2-m + \   T2 (29) 

m n-2 
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with the critical value at the 5% significance level of the F-distribution, 
F95(m,n — 2 — m + l). The null hypothesis is rejected and the trend is said to be significant 

(at the 5% level) if F> F95(m,n-2-m + l). 

3.2.   Extending the New Testing Procedure to the Multivariate Case 

In this subsection we generalize to new testing procedure introduced in section 2.2 to test 

the hypothesis Ho: b = 0 in the vector line plus noise model of equation (14). The noise 

in equation (14) is given by the AR(p) process satisfying equation (15) which we rewrite 

*(5)E,=U„ (30) 

where the mxm matrix operator 0(5) is given by 

®(B) = I-<l>lB-02B
2-..-®pBp, (31) 

with I the m x m identity matrix. If 0(5) were known, equation (14) could be rewritten 

(p      } <D(5)X, =<D(l)a+   I/*,- b + <D(l)bf + 0(5)E, 
Vi=i     ) 

= c + d? + Uf, 

(32) 

where c = 0(l)a + ( P 

V(=l     J 
b,  d = <5(l)b, and Ur is vector white noise.   If E, is a 

stationary operator, which implies det(0(l)) > 0, then d = 0 if and only if b = 0. To test 

b = 0 in equation (14) we test d = 0 in equation (32) using the ordinary multivariate 

linear regression-based test described in section 3.1. 

As in the univariate case, O(ß) is not known and must be estimated from the sample data. 

After computing the least-squares estimates, B = a' ; b' , as in equation (21) compute 

the residuals 

Er=Xf-a-br. (33) 

These residuals do not follow the same model as E, and in general are not stationary since 

E, =a + br + E, -a-bt 
(34) 

= (a-a) + (b-b)f + E,, 
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which does not have constant mean unless b = b. However, in most cases we find it 

reasonable to assume these residuals are approximately multivariate AR(p), and we let 

4>(5) denote the estimated autoregressive operator. We transform the data using 0(£) to 

obtain 

W,=<&(*)X, 

where c' = 0(l)a + 

= <D(l)a + 

( P . } 

f p        \ 

\i=\     J 
b + 4>(l)b? + g, (35) 

-l, b, d' = 0(l)b, and g, =0(5)0 '(ß)Uf, which will not be 

white noise but should be a reasonably close approximation to it. 

We proceed as in the univariate case (assuming g, is white) and begin to use standard 

regression procedures to test for the significance of d', which should be a good estimate of 
d if g, is close to being white. This estimation procedure is summarized as follows: 

1. Estimate a and b using least squares. 

2. Calculate E, as in (33). 

3. Find estimates of O(fi) where <D(5)E, = U,. Call this estimate 6(ß). 

4. Transform the data to obtain Wt = &(B)Xt = c' + d'f + g, where g, is nearly 

white. 

5. Calculate F as in section 3.1 using the vector series W, and assuming 

uncorrelated residuals. Compare F with F95(m,n - p - 2 - m +1), the critical 

value based on F -distribution, since 0(£)Xf is of length n-p. 

As in the univariate case, the distribution of the test statistic, F, defined in step 5, is not 

close to an F-distribution, yielding excessive significance levels when b = 0, when the 

residuals are highly correlated and the series length is small to moderate. The bootstrap 

approach used in the univariate case may be used in the same way to lower the significance 

levels. 
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3.2.1. A bootstrap approach 

To estimate the actual distribution and critical regions of the test statistic F when b = 0 in 

model (14), we employ a similar bootstrap procedure as in the univariate case. In the 

bootstrap procedure we obtain F for a sample data set using steps 1-5 above. To simulate 

realizations under Ho we estimate 0(5) in (14) assuming b = 0 and denote this estimate 

by <l>(0)(#). That is, under Ho we assume that any trending behavior in the series is due to 

correlation structure alone. We then obtain by simulation B realizations from the 

autoregressive model with AR operator given by O(0)(i5). For the Mi realization, 

b = \,...,B, we calculate F*b as in step 5. The null hypothesis is rejected at the a level of 

significance if F> Fl_a where FQ is the /?th empirical quantile of \Fb\ _ .   Since the 

probability that a randomly selected member from the population is greater than or equal to 

the ;'th largest value is j /(B+l), then by setting a = j I (B+1) it follows that F*_a is 

the jth largest value of {F*b\
B   , e.g., if a = 0.05 and 5 = 399 then F*_a is the 20th 

t      J b=\ 
f **")3 

largest value of < Fb > 
i399 

This multivariate testing procedure is basically equivalent to the univariate procedure when 

m = l, because the distribution of i2 with n - 2 degrees of freedom in the univariate case 

with white residuals is distributed as F(l,n - 2), which is the same as equation (28) with 

m = 1. As in the univariate case, when the correlation (in time) in the noise is high, i.e., 
det(0(l)) is near zero, the significance levels are still high after the bootstrap has been 

used to approximate the critical region. The actual significance levels determined by the test 

increase as m increases for cases where there is no correlation between paths (components 
of X,). It is reasonable to believe that an adjustment procedure similar to that described in 

section 2.2.2 could be used to help correct the inflated significance levels. A difficulty 

arises in choosing the "median" model to be employed in the second application of the 

bootstrap, as described in appendix A. This difficult issue must be left for the future. 
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APPENDIX A 

IMPROVED TESTS FOR TREND IN TIME SERIES DATA 

This appendix contains a paper by Wayne A. Woodward, Steven Bottone, and H. L. Gray 

entitled "Improved Tests for Trend in Time Series Data", which has been submitted for 

publication to the Journal of Time Series Analysis. 
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IMPROVED TESTS FOR TREND IN TIME SERIES DATA 

Woodward, Wayne A.*, Bottone, Steven**, and Gray, H.L.* 

* Southern Methodist University 

** Mission Research Corporation 

ABSTRACT 

The difficult problem of testing for linear trend in the presence of correlated residuals is 

addressed. Because of the correlated residuals, tests for trend based on the classical least- 

squares regression techniques are inappropriate. Even procedures in the literature that 

adjust for the correlation in the residuals tend to have the problem that the observed 

significance levels are higher than nominal levels for small to moderate realization lengths 

whenever the residuals are highly correlated. We introduce a bootstrap-based procedure 

to test for trend in this setting which is better adapted to controlling the significance levels, 

and this testing procedure is studied via simulation results. The procedure is then applied 

to the problem of testing for trend in global atmospheric temperature data and in data 

from models for ocean acoustic travel time along a path. 

Keywords:  regression with correlated residuals, bootstrap, global warming, hypothesis 

testing 
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1. INTRODUCTION 

The challenging problem of testing for trend in time series data is one which arises 

in many areas of application. This problem has been addressed by many authors including 

recent discussions by Brillinger (1989, 1994), Woodward and Gray (1993, 1995), 

Bloomfield and Nychka (1992), Bloomfield (1992), and Harvey (1989). 

The specific problem we address in this paper is that of testing for trend using the 

model 

Yt=a + bt + Zt (1) 

where Zt is a stationary autoregressive process of order p satisfying <p(B)Zt = at, where 

at is white noise and <j)(B) = 1 - <f>\B <f>PB
p, where B is the backshift operator 

defined by BkYt = Yt-k- In Figure A-l we show the global temperature series for the 

years 1880-1987 as obtained by Hansen and LebedefF (1987, 1988). It is clear that 

temperatures have had a tendency to rise over this time span. When viewing this series, it 

is difficult to ascertain whether the trend in the series is due to some deterministic 

component such as the bt term in (1) or is simply due to wandering or random trending 

behavior caused by roots of <p(r) = 0 near (or equal to) one. Given a model such as (1) 

and a series such as that given in Figure A-l, it is clear that estimation procedures would 

be expected to have difficulty "knowing" whether to attribute apparent trends to 

deterministic components (i.e. nonzero b) or to high autocorrelation in Zt (i.e., roots of 

4>(B) = 0 near one). When roots of 4>(r) = 0 are near unity the estimation procedures 

currently in use tend to be biased in favor of attributing random trending behavior to the 

existence of a nonzero slope. Specifically, when 0(r) = 0 has a root or roots near unity, 

tests for trend assuming model (1) have a tendency to inflate the significance level over 
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nominal amounts, i.e., to attribute the trend behavior to the term bt. Park and Mitchell 

(1980) studied the case in which the autoregressive order p = 1 and used simulations to 

examine a number of estimation procedures including a maximum likelihood method due 

to Beach and MacKinnon (1978). They concluded that all the test procedures studied had 

a tendency for the slope to appear more significant than it really is when 0(r) = 0 has a 

root near one, i.e., when <f>i'is near one. The SAS AUTOREG procedure uses the Beach 

and MacKinnon ML estimates and quotes p-values associated with the test Ho : b = 0. 

These p-values are based on the assumption that the test statistic calculated is distributed 

as t with n - 2 degrees of freedom. Park and Mitchell (1980) indicate that these types of 

results can be very misleading and that when <f>(r) = Ohas roots near one, the user should 

consider using lower nominal significance levels to adjust for the fact that actual 

significance levels are higher than the nominal levels. A discussion of these problems is 

also given in the SAS/ETS User's Manual (1993). Woodward and Gray (1993) found that 

in simulated realizations of length n = 100 from (1) where <j>(B) = 1 - .955 and b = 0, 

a significant trend is found about 35% of the time using the Bloomfield and Nychka 

(1993) test (using a 2-sided test at the nominal 5% level) which adjusts the standard error 

of the least squares estimator of b to account for the correlation structure. Additionally, 

Brillinger's (1989) test for a monotonic trend in a time series found a significant trend in 

about 50% of the realizations in this case. Use of SAS to obtain ML estimates in this 

same setting resulted in significant results about 25% of the time. 

Based on the results discussed above, we see that the existing procedures can have 

such high true significance levels that the finding of a significant trend using these results 

must be viewed with extreme caution. One might even conclude that it is often simply not 

possible to examine a series of short to moderate length and make an intelligent decision 

concerning whether an apparent trend is deterministic or random. In this paper we help 

make such a decision more plausible by introducing a new procedure for testing the 

hypothesis Ho : b = 0 in (1) which is more effective in controlling the actual significance 
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level even in the presence of highly autocorrelated errors. In Section 2 we briefly discuss 

tests for trend and introduce our new procedure. In Section 3 we discuss simulation 

studies that demonstrate the fact that the new procedure does a much better job of 

maintaining actual significance levels near nominal levels. Finally, in Section 4 we apply 

the test proposed here to some actual data. 

2. A NEW TESTING PROCEDURE 

In this section we specifically address the problem of testing Ho : b = 0 in (1) 

against one and two-sided alternatives. Some techniques proposed in the literature (e.g. 

Bloomfield and Nychka, 1992) estimate b using usual least squares estimators and adjust 

the standard error of the least squares estimator to account for the correlation structure. 

Others such as the Beach and MacKinnon (1978) ML technique involve iterative 

procedures for simultaneously estimating a, b, and the coefficients in <f>{B). The 

technique we propose uses the usual least squares estimates of a and b. Notice that if 

<j>(B) in (1) were known, then we could rewrite (1) as follows: 

<f>(B)Yt = 0(l)a + (jti<f>i) b + #1)W + 4>{B)Zt 

= c + dt + at (2) 

where c = 0(1) a + ( J2 ifc 1 b and d = 0(1) b and where at is white noise. 

Note that if Zt is stationary, which implies 0(1) > 0, then d = 0 if and only if b = 0, and 

d and b have the same sign when 6^0. To test b = 0 in (1) we simply test d = 0 in (2) 

in which case we are able to use the usual regression-based standard errors since the 

residuals are white. 
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In practice <p(B) is not known so, for now, we consider the following approach. 

The least squares estimates of a and b (denoted a and b) are obtained and the residuals 

from the regression line are calculated using 

Zt=Yt-a-bt. (3) 

These residuals do not follow the same model as Zt and are in general not stationary since 

Zt=a + bt + Zt-a-bt 

= (a-a) + (b-b)t + Zt 

which does not have constant mean unless b = b. However, in most cases we find it 

reasonable to assume that Zt is approximately AR(p), and we let <f>(B) denote the 

estimated autoregressive operator. We transform the data using (f>{B) to obtain 

Wt = 4>{B)Yt 
p 

= 0(l)a+    E»& )b + <f>(l)bt + gt 
u=l 

= c' + d't + gt (4) 

where c = ?(l)o + (El"?*)6 >    ^ = ?(!)&.and where# = ^(B)^1 (B)at which 

will not be white noise but should be a reasonably close approximation to it. 

A straightforward application of the procedure (assuming gt is white) is to use 

standard regression procedures to test for the significance of d. This estimation procedure 

is summarized in the following: 

(i) Estimate a and b using least squares. 

(ii) Calculate Zt as in (3). 
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(Hi) Find Burg estimates of <f>(B) where <f>(B)Zt = at (see Burg, 1967 and 

Marple, 1987). Call this estimate faB). 

(iv) Transform the data to obtain 4>{B)Yt = c' + d't + gt (5) 

where gt is nearly white noise, 

(v) Calculate t = d/SE(d) where d and its standard error are the usual 

least squares-based quantities assuming uncorrelated residuals. Compare 

t with t(n — p — 2) critical values based on Student's t since <f>(B)Yt is of 

length n — p. 

We considered a 2-sided version of this procedure on simulated realizations of length 100 

from the model in (1) with faB) = 1 - .951? and b = 0. We found that a significant 

trend is typically found over 25% of the time using usual critical regions based on 

Student's t, and so we see that this procedure suffers from the same problem of excessive 

actual significance levels which occurred with the previously mentioned tests. 

It seems that the primary reason for the excessive significance levels in this case is 

that when fa in 1 - fa B is close to 1, <f>l tends to be less than fa so that 1 - fa tends to 

be larger than 1 - fa. This happens in general, i.e., when faB) has a factor close to 

1 - B then 0(1) tends to be larger than 0(1). In the AR(1) case, for example, it is well 

known that usual estimators (i.e.,OLS, ML and Burg) for fa exhibit a bias toward zero, 

i.e., away from the nonstationary region (see Kang, 1992). This bias is demonstrated in 

Table A-l where we show the average of the Burg estimates of 0i over 250 replications 

from a variety of realization lengths and values of fa. For each configuration we show the 

average of fa estimates before and after removing the least squares line. The bias that has 

been addressed by Kang is that found before the line is removed. There it can be seen that 

for n = 50 and n = 100 this bias can be substantial. However, it should also be noticed 

that after removal of the line, the estimates are even more biased away from the 

nonstationary region. This is not surprising since the effect of removing the line will be to 
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use the line to account for some of the behavior associated with the correlation structure 

in the original series. Thus, in the n = 100 case with 0 = 0.95, we see that 

0(1) = l - 0, « 0.124 which is substantially larger than 0(1) = 0.05. Our simulations 

show that transforming the series as in (2) with the true value of 0(B) and testing 

Ho : d = 0 using standard regression-based test statistics, leads to a test that appears to 

have the appropriate significance level, while as we have seen, transforming by <p(B) 

instead of <f>{B), which we of course must do in practice, leads to a test with inflated 

significance levels. 

Examination of the calculated ? values using this procedure indicates that the 

variability of t is substantially larger than that which would be expected based on the 

Student's t with n-p-2 degrees of freedom. In Table A-2 we show empirical 97.5th 

percentiles obtained from 100 simulated realizations from the model in (1) with b = 0 and 

p = 1 for several values of n and <j>\. In the table we see that for 0i near unity, these 

percentiles are substantially larger than the percentiles of a Student's t with n-p-2 

degrees of freedom which in the cases considered here are slightly larger than 1.96. Thus, 

in these cases, the distribution oft is symmetric about zero but does not follow a Student's 

t with n-p-2 degrees of freedom. It is clear that for a given n, the variability of t 

increases as the true value of 0i approaches +1. 

(a) A bootstrap approach 

In order to estimate the actual distribution of? when Yt follows the model in (1) 

with b = 0, we propose a bootstrap procedure. In this procedure we obtain t as 

described previously in (5). To simulate realizations under Ho we estimate <f>(B) in (1) 

assuming b = 0. We denote this estimate by 0(o) (B). That is, under Ho we assume that 

any trending behavior in the series is due to the correlation structure alone. We then 

obtain B realizations from the autoregressive model with AR operator given by 0(o) (B). 

For the 6th realization, b = 1, ..., B we calculate t*b as in (v).  It can be shown that t b 

A-8 



does not depend on the white noise variance, which thus can be chosen arbitrarily for the 

bootstrap replications. For the 2-sided test, the null hypothesis is rejected at the a level of 

significance if   t >t1_*a,2 
or    * < *Q% wnere ** *s the /3th empirical quantile of 

{* 5 }&=i • Because of the symmetric nature of t, in practice we accomplish this test by 

rejecting Ho if |T| > |i| x*_a where |t| x*_a is the (1 - a)th empirical quantile of {\t *b\} 6fx. 

Since the probability a randomly selected member from the population is greater than or 

equal to the ;'th largest value is j/(B + l), then by setting a = j/(B +1) it follows that 

|t| X*Q is the jth largest value of {|* Jl}^, i.e., if a = 0.05 and B = 399 then \t\ ^Q is 

the 20th largest values of {|i£|}^. For a 1-sided test, the a-level critical value is the 

(1 — a)th or ath empirical quantile of {£ £} b=l depending on whether the alternative is 

Hi :6 > 0 or Hi :& < 0 respectively. 

(b) A second application of the bootstrap 

It should be noted that for linear one, the observed significance levels are high. 

This phenomenon is caused by the bias shown in Table A-l. That is, if t is calculated 

from data associated with fa = 0.99, 6 = 0, and n = 100, the estimate 0^is likely to be 

about 0.95. Thus, the bootstrap realizations are generated from the AR(1) model 

(1 — <f)^)Xt = at with <p^ & 0.95, and this will result in£ b values that are not as 

variable as those for the original model with <p\ = 0.99 as can be seen in Table A-2. An 

intuitively appealing procedure would be to scale the original t so that it has variance 

comparable to that of the bootstrap distribution for t b, i.e., we obtain t^j = C t where 

C = ay. /a^ and where C would be less than one when 4>\ is near one. Clearly, a^. can 
b b 

be estimated from tb,b = 1, ..., B. However, no comparable estimate of a^ is available. 

It is clear from Table A-l that the estimates of the autoregressive coefficient of the 

bootstrap realizations from (1 — <f>^)Xt = at will in general underestimate 0^in much 

the same way that  0^tends to underestimate <j>\.   Let <p^, b — 1, ..., Bdenote the 

coefficient estimates of 0^from the B bootstrap realizations, and let <p\ (m) denote the 
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median of the coefficient estimates obtained from these realizations. We generate a second 

set of bootstrap realizations from the AR(1) model with coefficient <p x (m), and we denote 

the t values calculated from this second set of bootstrap realizations as t *b, b = 1, ..., B. 

Since a?, /a? ?s ax, / o> we calculate t^,- = C t where C = JX, /a?, and the a 's are 
lb l tb'

lb 't6 

the sample standard deviations from the B values of t *b and t *b. 

The concept of the "median" model is not quite so clear-cut when an AR(p) model 

with p > 1 is used. Simply selecting a model whose coefficients are the corresponding 

median values <f>*(m), j = 1, ..., p may result in an AR(p) model that does not have the 

desired properties and may even have roots inside the unit circle. Since the phenomenon 

of excessive significance levels is caused by roots of 4>{r) = 0 close to one, we take 0(1) 

to be our measure of the extent to which a fitted model has a root near +1. In the general 

AR(p) case, the "median" model is then selected as the model from the first set of 

bootstrap   realizations   associated   with   the   median   value   of  {<t> *b)(X)}h=\   where 

0*(l) = l-0* QJb)-     Tft*s  Proced"ure  is  equivalent  to  the  approach 

described in the preceding paragraph when p = 1. 

3. SIMULATION STUDIES 

In this section we discuss the results of simulation studies designed to examine the 

performance of the testing procedures discussed in the previous sections. In Table A-3 we 

show the observed significance levels from testing Ho : b = 0 vs. Hi : b ^ 0 in (1) with 

p = 1 based on simulated realizations for a variety of values of n and (f>\. The testing 

procedures used were the Beach and MacKinnon (MLE) (1978) procedure using SAS, the 

Bloomfield and Nychka (BN) (1992) procedure, the transformation (T) procedure 

discussed in (5) using Student's i-based critical values, the bootstrapped version (TB) of 

the transformation procedure, and the "adjusted" bootstrap approach (TBA) using the 

second bootstrap application. The tabled values are the percentage of simulated 

realizations for which a trend was detected. For MLE, BN and T the results shown are 
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based on 250 replications while those for TB and TBA are based on 1000 replications. In 

the table it can be seen that for small to moderate realization lengths, the observed 

significance levels for MLE, BN, and T is substantially higher than the nominal 5% level 

especially when </>iis near +1. Only for n > 500 with <f>\ = 0.8 did the actual observed 

significance levels attain the nominal levels. For <j)\ = 0.95 it seems that these levels are 

approaching 5% as n increases, but the 5% level was not attained by n = 1000. Thus, 

based on the evidence presented here it is seen that the MLE, BN, and T techniques do 

not behave well for highly correlated residuals and small to moderate realization lengths. 

However, even in the case of highly correlated residuals these tests appear to behave 

properly asymptotically. 

Results for TB and TBA are given for fa = 0.8, 0.95, 0.99 and - 0.95. The 

significance levels for TB are much closer to the nominal levels, being somewhat too large 

for n < 100 when <f>\ = 0.95 and for n < 500 when 4>\ = 0.99. The significance levels of 

6.4% in the table are borderline significantly too high (about 2 SE's above 5%). As 

expected, the use of TBA improved the significance levels and only in the cases of n = 50 

and 500 with <f>\ = 0.99 were the observed significance levels significantly larger than 5%. 

It seems that as <f>\ approaches — 1, no corresponding significance level problems arise. 

This is reasonable since the inflated significance levels are attributable to apparent trends 

in Zt due to roots near +1. It is clear from the table that for values of 4>\ well removed 

from +1 and for larger realization lengths, significance levels for TB are acceptable and the 

adjustment does not have a substantial effect. 

In Table A-4 we show power results for a variety of values of 4>\ and slopes when 

n = 100 and p = 1. In order to standardize the variance of the residual series, Zty in all 

cases the white noise variance of the Zt series is selected so that cr| = a2
a/(l — <f>*) = 1. 

It can be seen that in the cases considered these tests do have substantial power, especially 

for lower values of 4>\. In fact the trend is detected over 90% of the time with TB and at 

least 82% of the time with TBA for <f)\ < 0.8 for the slopes considered.   The use of TBA 
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which does a better job of controlling the significance level, causes a dramatic reduction in 

power when <f>\ is near one and the realization lengths are not large. It is not surprising 

that smaller power is encountered for small to moderate slopes in the case in which 0i is 

near +1 due to the confusion between random and deterministic trends. However, if slight 

inflation of significance level (say to about 10%) can be tolerated, then one might consider 

the use of TB because of its substantially higher power than TBA in these cases. It should 

be noted that when nominal significance levels for TB were dropped below 5% in order to 

obtain actual significance levels of about 5% in these cases, the power for TB was 

comparable to that of TBA shown in the table. 

It should be noted that all simulations discussed in this section are concerned with 

the case in which Zt is AR(1). We have found these results to be representative of the 

case p > 1 if <f>(B) has at most a single factor near 1 - B. In the next section, in 

conjunction with the analysis of actual data series, we will examine simulation results for 

p> 1. 

4. APPLICATION TO TREND TESTING IN ACTUAL DATA 

In this section we consider the application of the tests proposed here to actual data 

sets of interest. We consider the Hansen and Lebedeff (1987, 1988) annual atmospheric 

temperature series for 1880-1987 shown in Figure A-l as well as acoustic travel time 

signals. Because of the small to moderate lengths of these series the bootstrap tests 

recommended here will be applied. 

(a) Atmospheric Temperature Series 

Woodward and Gray (1993, 1995) considered model (1) where Zt is modeled as 

an AR(8) as a possible model for the Hansen and Lebedeff data. The model they obtain, 

using least squares estimates of a and b and Burg estimates of the autoregressive 

parameters has a = - 0.410, b = 0.0055, with Zt modeled as 
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Zt = .4943Zt-i - .0688Zt_2 + .0333Z4_3 + .\253Zt-4 - .1035Z,_5 + .2973Zt_6 

- .2305Ze_7 + . 1970Zf_8 + a* (6) 

where 3^ = .013064. Woodward and Gray (1995) display the factors of the eighth order 

characteristic polynomial associated with the model in (6) and show that it has a factor of 

(1 — .916J3) indicating a root near but not extremely close to +1. Bloomfield and Nychka 

(1992) considered the test statistic given by b/SE(b) where SE(6) takes the correlation in 

the residuals into account and is given by 

SE(5) = [2jf W(f)S(f)df 
1/2 

(7) 

where 

W(f) = \J2bte 
n 

2xift 

with 

t=\ 

*-   *-7 

t(t-ty 
t=\ 

i.e., & = X,&tYj. For a given realization, Zt is estimated byZt = Yt - a - Wand S(f) is 

an appropriate estimate of the spectrum of Zt. 

Using this procedure a test statistic of 4.70 was obtained which when compared to 

usual normal or Student's t critical values is highly significant indicating the presence of a 

trend. These results were consistent with Bloomfield and Nychka's (1992) analysis of the 

temperature series. However, as pointed out here and by Woodward and Gray (1993), the 

true significance levels of these tests can be sufficiently large to make the finding of 

significance meaningless.   We used TB and TBA to perform a 1-sided test against the 
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alternative that b > 0. Use of TB resulted in a test statistic of 2.73. The 1-sided critical 

value t 95 was obtained from B = 399 bootstrap samples to be 4.50, i.e., the test does not 

indicate a significant slope. The bootstrap-based p-value is 14.3%. For TBA we obtained 

tadj = 195 which should be compared with the same 95% critical value of 4.50 and this 

again is not significant at the 5% level. The bootstrap-based p-value in this case is 22.3%. 

In order to examine the observed significance level in this case we fit a stationary 

AR(8) model to the temperature data without first removing the line. The model obtained 

is the AR(8) model 

Yt = .5547YU - .042iyf_2 + .0669Yt-3 + .1569YU - .0919Yi_5 + .322irt_6 

- .232iyt_7 + .2017Y4_8 + (H (8) 

with a2 = .0138. In this case the characteristic polynomial has a factor of 1 - 98J3 

indicating that the model is very nearly nonstationary with a root near +1. Thus, the 

trending behavior is accounted for in this model via this near nonstationarity. Realizations 

of length n = 100, 150 and 200 were generated from the model in (8) and the percentage 

of realizations for which the tests found significant trends are shown in Table A-5(a) 

where it can be seen that the significance levels for TB are around 8% while those for 

TBA are close to the nominal level of 5%. Consistent with the simulation results of the 

previous section, the significance levels using BN were excessively high, with the 

significance levels in this case being about 25%. The power figures for TB and TBA are 

shown in Table A-5(b) based on realizations generated from (6) which actually contains a 

line. If this were the true model and 100 years of data were available, then it can be seen 

that the trend will be detected about 76% of the time with TB and about 50% of the time 

with TBA. If 150 or 200 years of observations were available, then it can be seen that both 

tests would have a strong chance of detecting the trend. These results certainly do not 

indicate a trend in the Hansen and LebedefF data, and even TB (which has an inflated 
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significance level) does not yield significance while it has 76% power against alternatives 

such as (6) for n = 100. 

A final comment in this section concerns the ARIMA(9,1,0) model fit by 

Woodward and Gray (1993) to the temperature series. Woodward and Gray showed that 

about 67% of realizations of length n = 108 from this model were seen to have a 

significant trend using a 2-sided version of Bloomfield and Nychka's (1992) test at the 5% 

nominal significance level. For comparison with the results in Table A-5, it should be 

noted that this figure reduces to approximately 35% when a 1-sided test is used. In Table 

A-5(c) we show the percentage of realizations from this ARIMA(9,1,0) model for which 

TB and TBA found significant slopes. There it can be seen that TB and TBA found a 

significant slope at the nominal 5% level about 13% and 7% of the time respectively for 

the realization lengths considered. It should be realized that the ARIMA(9,1,0) is not a 

special case of (1) with b = 0 since in (1) Zt is assumed to be stationary. Thus, the 

ARTMA(9,1,0) model is simply an alternative to (1), and we would not expect the 

percentage of realizations for which a significant slope is (incorrectly) found to be at the 

nominal 5% level. This is the case because of our procedure of generating the bootstrap 

realizations from a stationary AR(p) model fit to the data. However, we see that these 

percentages are much closer to 5% than with the Bloomfield and Nychka test, and thus 

there is less likelihood of confusion between a series with real trend and one with ARTMA- 

type random trends using the new tests. If we included a check for unit root and 

generated the bootstrap realizations from a model including a unit root model if this was 

indicated, then the percentage of realizations from the ARTMA(9,1,0) model for which a 

significant trend is detected should be approximately the nominal level. 

(b) Ocean Acoustic Travel Times 

Since the speed of sound in the ocean increases as ocean temperature increases, an 

indication of the presence of global warming is a negative trend for the travel time of an 
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acoustic pulse along a long fixed path. The MASIG (Mesoscale Air-Sea Interaction 

Group) model is a reduced gravity ocean model driven by COADS (Comprehensive 

Ocean-Atmosphere Data Set) winds, coupled to an equatorial model at its southern 

boundary (Pares-Sierra and O'Brien, 1989). A 20 year simulation from this model, 

assuming no warming, for acoustic travel-time anomaly along a path from Hawaii to San 

Diego is plotted in Figure A-2. A question of interest concerns the length of time before a 

warming (if it existed) would be detected based on the test for trend described in Section 

2. The data plotted in Figure A-2 consist of monthly values for the 20 years simulated. 

We modeled the last 160 points of the MASIG data as an AR(10). This model is given 

by 

Zt = 2M65Zt-X - 1.6926Zt_2 + .9443Zt-3 - .7730Zf_4 + .6793Zt-5 - .4383Zt_6 

+ .06082Tt_7 - .2369Zt_8 + .4745Zt_9 - .2024Zt_i0 + at (9) 

with a = .001196. There are no positive real roots in the characteristic equation but 

there is a pair of complex roots with small complex component (i.e., associated with a 

frequency near zero). Our simulation consisted of generating realizations from (1) with Zt 

given in (9) based on two warming scenarios: lines with slopes of - 0.05 and - 0.1 

seconds/year. These slopes correspond to increases in ocean temperature along the path 

of 0.005 and 0.01 Celsius per year. In Table A-6 we give the results using TB and TBA 

assuming 5 to 30 years of monthly data. Again, the other tests would not be appropriate 

because of the small realization lengths required in this application. In the table we also 

consider the case in which there is no warming, i.e., b = 0. There it can be seen that when 

6 = 0 both tests produce actual significance levels which did not differ significantly from 

the nominal 5% level, with the only exception being TB at 5 years. 

For the two warming scenarios considered, it is clear that warming will not be able 

to be detected with high probability unless data are collected for a sufficiently long period. 

Based on the significance level results, one would probably be willing to use TB because 
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of its higher power. Even in this case, for warming to be detected at least 50% of the time 

in the simulations, at least 25 years of data are needed if the slope is - 0.1/year, and at 

least 30 years of data are needed if the slope is - 0.05/year. 

6. CONCLUDING REMARKS 

The results presented here are encouraging and indicate that it is possible to 

construct a test for trend with appropriate significance levels in the presence of highly 

autocorrelated noise when the realization length is not large. The results presented here 

also indicate that the test has reasonable power. 

The bootstrap procedure described here could be used analogously to obtain tests 

based on the test statistic 6/SE(6) where b is the least-squares estimate of ft and where 

SE(6) is given in (7). Alternatively, the procedure could be based on a test statistic t^ 

obtained using the Beach and MacKinnon (1978) ML procedure. In both cases, however, 

the procedures are relatively computationally intensive, making bootstrapping less 

practical than in the current implementation. 

It should be noted that in this paper we have assumed that the order p of 4>{B), the 

autoregressive model fit to the estimated residuals Zt,is the same as the order of 

<fr(°\B) obtained by assuming 6 = 0, i.e., the autoregressive order of the model fit to the 

Yt series itself. In fact, this need not be the case and the procedure described here could 

be modified to allow for different orders. In fact, as indicated in Section 5, the model may 

be allowed to have one or more unit roots if these are indicated as appropriate in the 

modeling procedure. In this case the problem with high significance levels when roots are 

on or very near the unit circle may be alleviated without the adjustment technique 

described here. 

The procedure described here is similar to that given by Woodward and 

Gray(1995). In that paper, a bootstrap-based classification analysis technique was 

presented for ascertaining which of two competing models produced realizations most like 
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the observed data. The results obtained there do not deal with the issue of testing the 

hypothesis Ho : b = 0 and controlling the probability of a type one error. Their findings 

related to the temperature data were consistent with those presented here in that a trend 

component was not indicated for the temperature series. 
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Table A-l. Burg Estimates of 0i Before and After Removing 
the Least Squares Line 

(250 replicates) 

True 4>\ 

n 

.5 .8 .9 .95 .99 

Before .455 .718 .818 .857 .890 
50     After .421 .666 .757 .784 .818 

Before .473 .765 .860 .908 .943 
100   After .458 .745 .833 .876 .902 

Before .499 .792 .893 .942 .981 
500   After .495 .788 .889 .938 .974 

Table A-2. Observed 97.5th percentiles of t values calculated as in 

5(d) 

based on 1000 realizations from the model 

Yt = a + bt + Zt 

where (1 — 4>\B)Zt = at   and 6 = 0 

50 
n    100 

150 

4>i 
0.50 0.80 0.95 0.99 *.975(rc-p-2) 

2.40 3.01 5.12 7.21 2.01 
2.15 2.65 4.18 6.98 1.98 
2.00 2.26 2.93 5.03 1.98 
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Table A-3.   Observed significance levels associated with tests 

for b = 0 based on the model 

Yt = a + bt + Zt 

where (1 — <piB)Zt = at 

Nominal level = 5% 

2-sided tests 

1000 replications with B = 399 for TB and TBA 

(250 replications for MLE, BN and T) 

50 
100 

n    250 
500 
1000 
SE 

01 = .8 fa = .95 
MLE BN T TB TBA MLE BN T TB TBA 

16.2 22.0 18.4 5.9 5.3 36.2 36.0 37.2 10.0 6.2 

12.0 16.8 16.0 6.4 5.9 25.2 40.0 28.4 7.6 4.3 

7.6 12.4 8.0 3.8 4.1 15.6 16.8 17.6 6.4 5.7 
6.2 4.8 5.6 4.6 5.1 10.8 12.8 15.2 6.4 6.2 
5.4 4.4 4.8 4.1 4.0 8.4 6.0 9.6 6.1 6.2 

1.4 0.7 1.4 0.7 

<px = -99        0i = - .95 

50 
100 

n    250 
500 
1000 
SE 

TB TBA TB TBA 
14.9 8.2 4.5 4.5 
13.6 6.1 5.0 5.1 
10.5 6.3 4.3 4.9 
8.3 6.7 6.0 6.1 
5.7 4.9 5.4 5.6 

0.7 
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01 

Table A-4.   Observed power associated with TB and TBA 

for n = 100 and various values of b where the model is 

Yt = a + bt + Zt 

where (1 — <p\B)Zt = at 

Nominal level = 5% 
2-sided tests 

1000 replications with B = 399 

b 

0.05 0.10 0.15 

0.95 
0.90 
0.80 
0.00 

SE 

TB TBA TB TBA TB TBA 
47.3 26.8 80.3 48.3 93.5 71.7 
58.4 38.3 86.4 58.3 97.2 78.7 
90.4 82.0 99.2 92.5 100.0 97.0 

100.0 100.0 100.0 100.0 100.0 100.0 
1.6 
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Table A-5: Observed significance levels and powers for "no line" and "line" models 
fit to the Hansen and LebedefT temperature data 

1000 replications for TB and TBA, B = 399 

250 replications for BN 

Nominal level = 5% 
1-sided tests 

(a) Observed Significance Level 

AR(8) 

n 

(b) Observed Power 

AR(8) + line 
BN TB TBA TB TBA 

100 24.4 8.0 5.9 76.2 50.2 

150 23.6 9.1 6.6 93.3 77.6 

200 27.6 7.6 5.5 99.9 94.8 

SE 1.4 0.7 1.6 

n 

(c) Alternative Nonstationary Model 

ARIMA(9,1,0) 

100 
150 
200 
SE 

TB TBA 
11.2 6.0 
14.4 8.9 
12.1 7.0 

1.6 
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Table A-6: Observed significance levels and powers 
for AR(10) model fit to monthly MASIG data 

1000 replications, B = 399 
Nominal level = 5% 

1-sided tests 

Years 

Significance 
Level 

Powei 
- 0.05/yr slope - 0.1/yr slope 

TB TBA TB TBA TB TBA 
5 7.5 4.3 9.5 5.3 9.8 4.9 

10 6.0 4.3 10.5 7.5 14.4 8.7 
15 5.3 5.1 13.7 11.6 26.8 22.7 
20 4.6 4.2 21.7 18.4 45.8 39.0 
25 5.2 5.0 31.8 28.6 70.5 62.0 
30 6.0 5.7 49.5 45.7 88.0 83.7 
SE 0.7 1.6 1.6 
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Figure A-l.  Global Temperature Series 

Hansen  and   Lebedeff  Series 
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Figure A-2.  Simulation from MASIG Model:  Hawaii to San Diego 
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APPENDIX B 

THE TRENDS SOFTWARE 

B.l.   Introduction 

The TRENDS software performs four basic computations related to detecting a trend in 

time series data: 1) Trend Detection, 2) Power of the Test (probability of detecting a trend), 

3) Trend Stability (will the trend continue?), and 4) Classification Statistics. The trend 

detection software runs in one of two modes: automatic (novice) and manual (expert). At 

any stage in the analysis the user may turn off or on the customization button. With the 

customization button off the program will perform the calculation with no intermediate 

input from the user. The customization on mode allows the user to check the calculations at 

various intermediate stages and to change inputs if desired. 

B.2.   Getting Started 

To get started a set of time series data must be loaded. The time series data is assumed to 

be equally spaced in time. The data should be in a file with the first entry an integer giving 

the number of data points, n, followed by a column of n real data values. Once loaded, a 

plot of the data appears in the main window (see figure B-l). A slider bar allows the user 

to choose any contiguous subset of the data on which to perform the subsequent analysis. 

B.3. Trend Detection 

This option answers the question: is there a trend in the selected time series (or subset)? 

For the selected time series, the test described in section 2.2 is performed (the default 

number of bootstrap replications is 399). If the test statistic, t, falls in the critical region 

the trend is significant, at the 5% level, and is said to have been detected. When the 

customization button is on, the user is shown the trend program input dialog before it is 

executed. At this point the user has the option of changing any of the input parameters, 

which have their default values. The program chooses an order for the autoregressive 

process used to model the noise. The user has the option of changing this parameter at this 

time. 
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Figure B-l. Main window of TRENDS show input time series. 

The user may wish to carry out this entire process with no automation. After having 
selected the data (or subset), select "Pre-Processor" on the Transformation menu. Remove 
best fit line by selecting "Remove from Data" under Linear Trend. The transformed data 
with the best fit line removed is plotted along with the original data. (If the plot is not on 
the screen it can be selected from the View menu.) Estimate the order of an autoregressive 
process (AR) to model this transformed series by selecting "AIC Estimate" from the GW- 
Functions menu and executing. To run the trend program select "Trend Program" from the 
program menu and choose "Single Data Set" and "Original" buttons. One- or two-sided 
testing may be chosen and the AR order for the transformed data may be changed. The 
final result can be viewed by selecting "Current Session" from the View menu. Detailed 
output may be viewed by selecting "Reports" from the view menu. 

B. 4.   Power of the Test (Probability of detecting a trend) 

This option computes an estimate of the power of the test of significance of trend, i.e., an 
estimate of the probability that the trend will be judged as significant. This probability is 

computed by generating many realizations (the default is 100) from a line plus (AR) noise 
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model fit to the data and calculating the percentage of those realizations with significant 

trend using the test procedure described in section 2.2. 

When the customization button is on, the user is shown the trend program input dialog 

before it is executed. At this point the user has the option of changing any of the input 

parameters, which have their default values (the default value for the number of realizations 

is 100). The model parameters may be viewed, and changed if desired, by selecting the 

"Model Parameters" button in the Trend dialog or by selecting "Parameters" from the View 

menu. The series length for the data to be generated and the number of realizations to be 

performed (the larger the number of realizations, the better the statistics but the longer the 

execution time) are selected using the slider bars. With this option one can obtain answers 

to questions such as how long will it take to detect a trend in data similar to a given data set 

and how large would the trend have to be in a given data set to be significant. For 

example, to answer the question how long will it take to detect a trend in data similar to a 

given data set one increases the length of the realizations in the dialog box until the desired 

probability of detection is reached. One can easily determine the probability of detection as 

a function of series length by running the program with sequentially increasing values of 

the series length. 

The user may wish to carry out this entire process with no automation. After having 

selected the data (or subset), select "Pre-Processor" on the Transformation menu. Remove 

the best fit line by selecting "Remove from Data" under Linear Trend. The transformed 

data with the best fit line removed is plotted along with the original data. (If the plot is not 

on the screen it can be selected from the View menu.) To model this transformed series as 

an autoregressive process (AR) first estimate the order by selecting "AIC Estimate" from 

the GW-Functions menu and executing. Next estimate the AR coefficients by selecting 

"Estimate Coeffs" from the GW-Functions menu. To run the trend program select "Trend 

Program" from the program menu and choose "Generate Data from Model". Choose the 

realization length and the number of realizations using the slider bar. The entire set of 

model parameters may be viewed, and changed if desired, by selecting "Parameters" from 

the View menu. One- or two-sided testing may be chosen and the AR order for the 

transformed data may be changed (it should be equal to the model order of the data to be 

generated). The final result can be viewed by selecting "Current Session" from the View 

menu. Detailed output may be viewed by selecting "Reports" from the view menu. 
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B.5.   Trend Stability (Will the trend continue?) 

This option determines whether the trend detected as significant in option 1 is predicted to 

continue by determining if the selected series is best classified as a line plus noise model or 

an ARIMA model using the approach described in Bottone, Gray, and Woodward [1995]. 

The answer is either "the trend will continue" (line plus noise) or "the trend will not 

continue" (ARIMA). 

When the customization button is on, the user is shown the bootstrap program input dialog 

before it is executed. At this point the user has the option of changing any of the input 

parameters, which have their default values (the default number of bootstrap replications is 

399). The program chooses an order for the autoregressive process for the noise in a line 

plus noise model and the order of the ARIMA process used in the bootstrap classification. 

The user has the option of changing these parameters at this time. The user may also 

choose between parametric and non-parametric bootstrapping and choose a white noise 

variance classification or an Anderson classification. 

The user may wish to carry out this entire process with no automation. After having 

selected the data (or subset), select "Pre-Processor" on the Transformation menu. Remove 

best fit line by selecting "Remove from Data" under Linear Trend. The transformed data 

with the best fit line removed is plotted along with the original data. (If the plot is not on 

the screen it can be selected from the View menu.) Estimate the order of an autoregressive 

process (AR) to model this transformed series by selecting "AIC Estimate" from the GW- 

Functions menu and executing. To run the bootstrap program select "Boot Program" from 

the program menu and choose "Single Data Set" and "Original" buttons. Parametric or 

non-parametric bootstrapping may be chosen and the white noise variance (WNV) test or 

the Anderson test may be chosen. The AR order for the line plus noise model and the 

orders for the ARIMA model may be changed. The final result can be viewed by selecting 

"Current Session" from the View menu. Detailed output may be viewed by selecting 

"Reports" from the view menu. 

B.6.   Classification  Statistics 

This option computes the classification statistics showing how well the classification 

procedure of option 3 works. The result is a 2 x 2 matrix giving an estimate of the 

probability that the data will be classified as line plus noise given that it is line plus noise in 

the upper left hand corner. The lower right hand entry is the probability that the data will 

be classified as ARIMA given that it is ARIMA.   The off-diagonal entries give the 

B-4 



probability that line plus noise is chosen when the data actually comes from an ARIMA 

model and vice versa. 

When the customization button is on, the user is shown the boot program input dialog 

before both the first stage (A) and second stage (B) are executed. The first stage computes 

the probabilities that realizations generated from a line plus noise model fit to the data is 

classified as line plus noise or ARIMA. The second stage computes the probabilities that 

realizations generated from an ARIMA model fit to the data is classified as line plus noise 

or ARIMA. At this point the user has the option of changing any of the input parameters, 

which have their default values (the default for the number of realizations is 100). The 

model parameters may be viewed, and changed if desired, by selecting the "Model 

Parameters" button in the Boot dialog or by selecting "Parameters" from the View menu. 

The series length for the data to be generated and the number of realizations to be 

performed (the larger the number of realizations, the better the statistics but the longer the 

execution time) are selected using the slider bars. The number of bootstrap replications can 

also be changed using the slider bar. 

The user may wish to carry out this entire process with no automation: 

A. After having selected the data (or subset), select "Pre-Processor" on the Transformation 

menu. Remove best fit line by selecting "Remove from Data" under Linear Trend. The 

transformed data with the best fit line removed is plotted along with the original data. (If 

the plot is not on the screen it can be selected from the View menu.) To model this 

transformed series as an autoregressive process (AR) first estimate the order by selecting 

"AIC Estimate" from the GW-Functions menu and execute. Next estimate the AR 

coefficients by selecting "Estimate Coeffs" from the GW-Functions menu. Run the 

bootstrap program by selecting "Boot Program" from the program menu and choose 

"Generate Data from Model". Choose the realization length, the number of realizations and 

the number of replications using the slider bar. The entire set of model parameters may be 

viewed, and changed if desired, by selecting "Parameters" from the View menu. 

Parametric or non-parametric bootstrapping may be chosen and the white noise variance 

(WNV) test or the Anderson test may be chosen. The AR orders for the line plus noise 

model and the ARIMA model fit to the realizations may be changed. The final result (left 

hand entries of the classification matrix) can be viewed by selecting "Current Session" from 

the View menu. Detailed output may be viewed by selecting "Reports" from the view 

menu. 
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B. Re-enter the data. Select "operator" from the Transformation menu and apply the 

operator (1-B) (which is the default) on the series. The transformed data is plotted along 

with the original data. (If the plot is not on the screen it can be selected from the View 

menu.) To model this transformed series as an autoregressive process (AR) first estimate 

the order by selecting "AIC Estimate" from the GW-Functions menu and executing. Next 

estimate the AR coefficients by selecting "Estimate Coeffs" from the GW-Functions menu. 

Choose "MULT" from the GW-Functions menu and load the AR(p) operator, multiply by 

(1-B) (the default) and apply. Run the bootstrap program by selecting "Boot Program" 

from the program menu and choose "Generate Data from Model". Choose the realization 

length, the number of realizations and the number of replications using the slider bar. The 

entire set of model parameters may be viewed, and changed if desired, by selecting 

"Parameters" from the View menu. Parametric or non-parametric bootstrapping may be 

chosen and the white noise variance (WNV) test or the Anderson test may be chosen. The 

AR orders for the line plus noise model and the ARIMA model fit to the realizations may be 

changed. The final result (right hand entries of the classification matrix) can be viewed by 

selecting "Current Session" from the View menu. Detailed output may be viewed by 

selecting "Reports" from the view menu. 

B.7.   Example 

Figure B-2 shows the main window after a complete run. The time series analyzed, 

shown in figure B-2 is 108 monthly values (9 years) of simulated data from the GFDL 

model [Manabe et al., 1991] representing the travel-time anomaly along a path from Hawaii 

to San Diego. The upper left hand corner shows the result of step 1 that a trend is detected 

in the selected series. The power of the test, which is an estimate of the probability that a 

trend will be detected in data similar to the input data, appears as a pie chart in the upper 

right hand corner of the main window, which in this case is 96%. In other words, one 

expects to detect a trend in data similar to the input data 96% of the time. 

The lower left hand corner shows that the best eventual forecast is for the trend to continue 

by classifying the input time series as line plus noise as opposed to ARIMA. The 

classification statistics appear as a 2x2 matrix in the lower right hand corner of the main 

window. For this case, the probability of classifying a time series similar to the input 

series as line plus noise when it really is line plus noise is 95%. The probability of 

classifying the time series as ARIMA when it really is ARIMA is 66%. The off-diagonal 

entries give the probability of classifying the time series as ARIMA when it is actually line 

plus noise and vice versa. 
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S£il&'   GW-ftirtetlorrs     Transformation     Program, ,Vlew LHelp* 

Status:  tBoot program in stage 4-B still running... 100% done 

Figure B-2. Main window of TRENDS after complete run. 

B.8.   CD ROM 

A multimedia tutorial about the use of statistical methods in the ARPA Acoustic Monitoring 
of Global Ocean Climate (AMGOC) program has been developed by Mission Research 
Corporation. It is supplied on CD ROM and runs with a supplied viewer on both 
Macintosh and PC Compatible computers. It incorporates advanced user navigation 
techniques to allow exploration of information in visual form by providing access to several 
layers of material at successive levels of detail. As such, it is intended to guide the user 
through an introduction to the background of the overall program, an elementary 
understanding of the statistical methods employed, their importance to the problem of 
extraction of warming trends from ocean acoustic data and finally an example of application 
of the TRENDS software. The cover for the CD ROM for the tutorial is shown in 
figure B-3. The implementation of this multimedia software includes access to a 
navigation Help section, a full Index of the entire tutorial and a Map which allows the user 
to view the tree of choices and also to move instantly to any chosen page. Details about 
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this    CD    ROM   tutorial    can   be    obtained    at   the    internet    address: 
http://chapman.mrcsb.com/OA.html. 

Figure  B-3. Cover for the CD ROM multimedia tutorial. 
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